Bi-orthogonal systems on the unit circle, regular semi-classical weights and the discrete Garnier equations
نویسنده
چکیده
We demonstrate that a system of bi-orthogonal polynomials and their associated functions corresponding to a regular semi-classical weight on the unit circle constitute a class of general classical solutions to the Garnier systems by explicitly constructing its Hamiltonian formulation and showing that it coincides with that of a Garnier system. Such systems can also be characterised by recurrence relations of the discrete Painlevé type, for example in the case with one free deformation variable the system was found to be characterised by a solution to the discrete fifth Painlevé equation. Here we derive the canonical forms of the multi-variable analogues of the discrete fifth Painlevé for the Garnier systems, i.e. for arbitrary numbers of deformation variables.
منابع مشابه
Bi-orthogonal Polynomials on the Unit Circle, Regular Semi-classical Weights and Integrable Systems
Abstract. The theory of bi-orthogonal polynomials on the unit circle is developed for a general class of weights leading to systems of recurrence relations and derivatives of the polynomials and their associated functions, and to functional-difference equations of certain coefficient functions appearing in the theory. A natural formulation of the Riemann-Hilbert problem is presented which has a...
متن کاملBi-orthogonal systems on the unit circle, regular semi-classical weights and integrable systems - II
We derive the Christoffel-Geronimus-Uvarov transformations of a system of bi-orthogonal polynomials and associated functions on the unit circle, that is to say the modification of the system corresponding to a rational modification of the weight function. In the specialisation of the weight function to the regular semi-classical case with an arbitrary number of regular singularities {z 1 ,. .. ...
متن کاملIsomonodromic Deformation Theory and the Next-to-diagonal Correlations of the Anisotropic Square Lattice Ising Model
In 1980 Jimbo and Miwa evaluated the diagonal two-point correlation function of the square lattice Ising model as a τ -function of the sixth Painlevé system by constructing an associated isomonodromic system within their theory of holonomic quantum fields. More recently an alternative isomonodromy theory was constructed based on bi-orthogonal polynomials on the unit circle with regular semi-cla...
متن کاملIsomonodromic Deformation Theory and the Next-to-diagonal Correlations of the Anisotropic Square Lattice Ising
In 1980 Jimbo and Miwa evaluated the diagonal two-point correlation function of the square lattice Ising model as a τ -function of the sixth Painlevé system by constructing an associated isomonodromic system within their theory of holonomic quantum fields. More recently an alternative isomonodromy theory was constructed based on bi-orthogonal polynomials on the unit circle with regular semi-cla...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کامل